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Abstract. We introduce a growing self-avoiding walk in three dimensions (3D) that can 
terminate only by returning to its point of origin. This 'symmetric tricolour walk' (STW) 
is a direct generalization o f  the mart kinetic walk to 3 ~ ,  and yet is readily simulated. Our 
Monte Carlo simulations strongly suggest that the fractal dimension of the STW is exactly 
2. This conclusion is supported by a mapping of the STW onto a self-attracting self-avoiding 
walk at its collapse transition. 

- m e  equiiiiirium behaviour oi iong poiymer chains in a good soivent has been the 
subject of much research over the last four decades and is now quite well understood 
[l]. Chains of this kind are commonly modelled as self-avoiding walks (SAWS). In most 
studies, the process of polymerization (if present at all) is so slow that it may be 
neglected on time scales characterizing chain fluctuations. Recently, however, there 
has been a great deal of interest in the opposite, far-from-equilibrium limit of rapid 

Although at first there were difficulties in finding growing walks that grow indefinitely 
and that are strictly self-avoiding [2,3], several such walks are now known in two 
dimensions (ZD) [4-91. The most extensively studied and simplest of these walks is 
the smart kinetic walk (SKW) [4-61. The SKW on the hexagonal lattice depends on a 
single parameter p. At the critical point p = f , the walks have fractal dimension DSKW = 
[ 111. A second indefinitely growing SAW, the diffusion-limited self-avoiding walk 
(DLSAW), was introduced by Bradley and Kung [7] and by Debierre and Turban [SI 
as a model of the diffusion-limited growth of a polymer chain in a dilute solution of 
monomers [12]. Their Monte Carlo studies in ZD yielded the fractal dimension 
DDLsAW= 1.29+0.01 [13]. Both these results differ from the fractal dimension of the 
equilibrium SAW in its high temperature phase [14], qQsaw=$. 

Growing  SAW^ in three dimensions (3D) have received much less attention, even 
though ihey are of greaier physicai interest. Tie  kinetic growth waik does noi grow 
indefinitely, and is believed to slowly cross over to a regime in which it has the same 
scaling behaviour as the equilibrium SAW in 3~ [15]. The SKW has not been simulated 
in 3 ~ ,  since it has not been clear how to generalize the growth algorithm to dimensions 
d higher than 2. The algorithm used to generate the DLSAW is readily extended to 
d > 2, on the other hand, and simulations of the model have been performed in three 
and four dimensions [7; 101: Finally, Lyklema introduced the erowing self-avoiding 
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trail (GSAT) and studied it in ZD and 3~ by Monte Carlo [16]. Self-avoiding trails are 
walks that may revisit sites but not bonds, and so display a kind of partial self-avoidance. 
In 3 ~ ,  Lyklema tinds a fractal dimension very close to 2 for the GSAT. 

In addition to being important in the theory of growing polymer chains, the study 
of the SKW in ZD is relevant to several other topics of current theoretical interest [ 17-20]. 
For p =$, right and left turns are equally probable in the SKW on the hexagonal lattice, 
and the model can be mapped onto a certain self-attracting SAW at its collapse transition 
[18,19]. This correspondence has engendered considerable progress in the understand- 
ing of the ZD 0 point [la-201. 

There are two ways in which the SKW can be generalized to 3 ~ .  Recently, we 
discussed one of the possible generalizations: the smart kinetic surface (SKS) [21]. The 
SKS is a growing self-avoiding surface that directly generates the hull of a percolation 
cluster in 3 ~ .  The SKS was employed in [21] to determine the scaling properties of 3~ 

percolation hulls with much greater precision than in previous studies. 
In this letter we introduce a new growing SAW in 3 ~ ,  the tricolour walk. The tricolour 

walk is the second direct generalization of the SKW to three dimensions, and depends 
on two parameters, p and q. The tricolour walk is ‘smart’-it cannot se l f - t rapand 
yet it is readily simulated. An important special case of the model is the symmetric 
tricolour walk (STW), in which all allowed moves for the walker are equally weighted 
and p = q = f .  Our extensive Monte Carlo simulations of the STW strongly suggest that 
its fractal dimension is 2. We show that the STW is equivalent to a self-attracting SAW 

in equilibrium, and then use this equivalence to argue that its fractal dimension must 
be exactly 2. As a by-product, we obtain the exact 0 temperature for a self-attracting 
SAW in 3v. 

In the present letter, we shall contine our attention to the symmetric tricolour walk. 
Asymmetric tricolour walks will be considered in forthcoming publications [22]. 

The tricolour walk is defined on the lattice dual to the body-centred cubic (bcc) 
lattice. The Wigner-Seitz (ws) cell of the bcc lattice is a truncated octahedron, which 
is a regular polyhedron with eight hexagonal faces and six square faces. The dual (or 
ws) lattice is constructed by packing truncated octahedra to fill space and is four-fold 
coordinated (figure 1). A site of the original lattice resides at the centre of each ws 
cell. Note that each bond in the ws lattice belongs to three ws cells. Accordingly, we 
can label a particular bond by the unordered triplet (S, ,  S2, S,), where sites SI, S2 
and S, are the sites at the centre of the three ws cells that contain the bond. We will 
also say that the sites S,, S, and S, are adjacent to the bond (SI, S,, S,). 

The tricolour walk is a random walk on the ws lattice. As the walk moves through 
the lattice, the sites of the original lattice adjacent to the walk are coloured black, 
white or grey. Initially all sites in the original lattice are uncoloured, and the bonds 
in the ws lattice are all unoccupied. At the first time step, the walk traverses a bond 
labelled (Sy ,  S: ,  Sy). Sites Sy, S: and Sy are now coloured black, white and grey, 
respectively. Now consider the growth of the walk an arbitrary length of time later, 
and suppose that the walk has just travelled along the bond (S,,S,, S,). We may 
assume that sites S,, S, and S, are coloured black, white and grey, respectively. The 
point on the ws lattice that has just been reached belongs to four ws cells. Sites SI, 
S2 and S, lie at the centres of three of these cells. Let site &-the ‘target site’-be the 
site at the centre of the fourth ws cell. If S, is uncoloured, it is coloured black with 
probability p, white with probability q, and grey with probability r =  1-p-q. If the 
target site is already coloured, its colouring is left unchanged. The next step of the 
walk is now made. If S, is black, the walk traverses the bond (S4, S2, S,). If S, is 
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Figure 1. Wigner-Seitz lattice for the bcc lattice. The sites of the bce lattice (solid circles) 
form two interpenetrating simple cubic lattices. The Wigner-Seitr lattice is a space-filling 
packing of truncated octahedra (shaded solids). A site o f  the bcc lattice resides at the 
centre of each truncated octahedron. 

white, the walk travels along the bond ( S , ,  S , ,  SJ. Finally, if S, is grey, the bond 
( S , ,  S 2 ,  S,) is occupied. In each case, the sites adjacent to the newly occupied bond 
have three different colours. The walk terminates if it returns to its point of origin. 
Walks with p = q = r = 1/3 will be called symmetric, while walks with different values 
of p, q and r will be referred to as asymmetric. 

The tricolour walk is a natural generalization of the smart kinetic walk from ZD to 
3 ~ .  Like the SKW, the tricolour walk is strictly self-avoiding. The SKW is called ‘smart’ 
because it may terminate only by returning to its point of origin-it cannot make a 
move that would prevent its future return to its starting point. The same is true of the 
tricolour walk, since each site in a completed walk must belong to precisely two 
occupied bonds. 

We will begin our study of the symmetric tricolour walk by attempting to anticipate 
its behaviour, based on the analogy with the SKW on the hexagonal lattice. The resulting 
conjectures on the behaviour of the STW will then be tested by Monte Carlo simulations. 

First, consider the SKW for p = f .  For this value of p ,  all allowed moves are equally 
probable. The walks generated are scale invariant [4] with a fractal dimension of 
[ll]. Thus, p = f  is a critical point for the SKW. Now consider the symmetric tricolour 
walk. When p = q = r =f, the three colours black, white and grey are equally probable, 
and hence all allowed moves are equally weighted. By analogy with the behaviour of 
the SKW, we expect p = q = f  to be a critical point for the tricolour walk. If this is so, 
we expect that STW~ will be scale invariant with a non-trivial fractal dimension D3. 
We shall determine D3 in what follows. 

In our Monte Carlo simulations of the STW, each walk either closed or grew to the 
maximum permitted length of N,,, = 220 = 1048 576 steps. A total of 10000 walks were 
constructed, which required a total of roughly 60 CPU hours on an IBM RISC Sys- 
tem/6000 model 540. 
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Of the 10 000 walks generated, a total of 6269 had not closed when they reached 
length N,.,. For these open chains, we computed the average squared distance (R2(A)) 
between sites A steps apart for A = 1,2, 22,. . . ,2”. For each value of A, we averaged 
over each pair of points separated by A steps within a chain, and then averaged over 
all the open chains. A log-log plot of (R2(A)) versus A (figure 2) reveals a linear region 
three decades wide, and so strongly supports our identification of p = q = f as a critical 
point for the tricolour walk. A least-squares fit to all but the first four points gives the 
estimate D3 = 2.029 f 0.003 for the fractal dimension. The error quoted here is the 
standard deviation obtained by a least-squares fit, and does not take into account any 
systematic errors present. To obtain a more reliable estimate of D3, we computed the 
finite-size estimator 

D.(A) In 4[ln(R2(A)) - ln(Rz(A/2))]-’ (1) 

for A = 2,2’, . . . ,2”. For large A, the estimator D,(A) converges to the fractal dimension 
D3. Our results are shown in figure 3. D.(A) overshoots the value 2 and then decreases 
towards it. Based on these results, we think that it is likely that the asymptotic value 
of D3 is 2. 

Figure 2. Log-log plot of the mean square distance (R‘ )  between two Sites separated by 
A steps as a function of A far the open symmetric walks. The straight line is a linear least 
squares 61 to the data points for A 2 3 2 .  This fit gives the estimate D,=2.029+0.003 for 
the fractal dimension of the symmetric walks. 

We now show that the STW is equivalent to a self-attracting self-avoiding loop 
(SASAL) that has come to equilibrium at a certain temperature. We then use this 
correspondence to argue that the fractal dimension of the srw is exactly 2, as suggested 
by our Monte Carlo results. 

Let us first define the equilibrium SASAL. Let C be an arbitrary self-avoiding loop 
(SAL) of N bonds on the ws lattice. In order to assign an energy to this SAL, we walk 
around it, colouring the adjacent sites in the original lattice as, we go. We first choose 
a bond in C, and let the label of the bond be ( S y ,  S:, S:). The sites Sy, S: and Sy are 
coloured black, white and grey, respectively. Next, we traverse the bond in one of the 
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Figure 3. The finite-sire estimator DJA) for the fractal dimension of the open symmetric 
walks as a function of log, A. &(A) appears to converge io 2 as A grows large. 

two possible directions. The site just reached is shared by the ws cells centred on sites 
Sy,  S: and S!.  It also belongs to a fourth ws cell centred on a site which we label S y .  
Site Sy is now coloured in such a way that the sites adjacent to the next bond in the 
SAL have three different colours. We continue colouring in this fashion as we follow 
the SAL. To see what happens in the general case, consider the situation after the 
colouring of the sites adjacent to the bond (Si,  S,, S,) has just been completed. The 
site just reached is shared by the three ws cells centred on sites S,, S, and S, .  It also 
belongs to a fourth ws cell centred on a site we will label S,. We now colour S, in 
such a way that the sites adjacent to the next bond in the SAL have three different 
colours. If S., has been coloured previously, it is recoloured. This recolouring can either 
change the colour of S., or leave it unmodified. This process continues until we return 
to the point of departure. 

We are now ready to assign an energy to  the SAL. If the colour of a site is changed 
at any point in the colouring process, the SAL has infinite energy-in other words, the 
conformation is forbidden. Otherwise, the energy of the loop is taken to be ES(C) ,  
where s ( C )  is the number of bcc lattice sites adjacent to the loop. Thus, each coloured 
site is assigned an energy E. Note that the number of times that sites are recoloured, 
n ( C ) ,  is equal to N + 3 - s ( C ) .  As it ought to be, the energy assigned to the SAL is 
independent of the bond chosen as the starting point for the colouring process, and 
of the direction we travel around the SAL. The energy is also unaffected by permutations 
of the colours assigned to the sites Sy,  S i  and S!. 

The partition function of the SAL at temperature T is 

ZN(T) = Z exp[-kWC')I (2) 
C' 

where the sum runs over all allowed SAL configurations C' and p 
temperature. The Boltzmann weight of a particular allowed configuration C is 

T-' is the inverse 

w(C, N, T )  =exp[--P4C)1/ZN(T). ( 3 )  
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The SAL we have defined has a certain set of forbidden configurations. It also has 
an attractive short-ranged interaction between monomers on sites in the same ws cell, 
This interaction has strength E, and leads to higher Boltzmann weights for loop 
conformations with small numbers of adjacent sites. We expect this problem to be in 
the same universality class as the usual self-attracting SAW with nearest neighbour 
interactions alone. If this is so, the SAL will have a mean radius of gyration (R) that 
scales as N' at high temperatures, and the value of U will be the same as that observed 
for the unconstrained 3~ SAW in the absence of attractive monomer-monomer interac- 
tions [l]. Monte Carlo simulations of the latter problem have yielded the estimate 
U,,, = D;iw= 0.592*0.003 [231. As the temperature is reduced, a collapse transition 
occurs at some temperature T =  To with T,/E = O(1) [l]. For temperatures T <  T,, 
the SAL has a non-zero density and U assumes the value f .  Finally, at the collapse 
transition temperature the value of U is expected to be f ,  since the upper critical 
dimension for the 0 point is 3 [l, 241. 

We next consider the tricolour walk with p = q = f. The probability that a particular 
step is made is if the target site is uncoloured, and is 1 if the target site has already 
been coloured. Any move that would necessitate a change in the colour of the target 
site is forbidden, and so each time that a previously coloured site is targeted, the next 
move is forced. The probability that a loop of length N is formed is 

where the sum runs over all  allowed's^^ loop configurations of length N and n(C')  
is the number of times that forced moves are made in the walk C'. The probability of 
a particular allowed loop configuration C (given that the walk closes in N steps) is 

p ( C ,  N ) =  P(N)-'3-N exp[(ln 3)n(C)]. 

Let To-~/ln3.Comparing(2) and(4) andusingtherelation n ( C ) = N + 3 - s ( C ) ,  
I we see that 

while from (3) and ( 5 )  we obtain 

w(C,  N, To)=p(C, N ) .  (7)  

Equations (6) and (7) show that the SASAL at temperature T =  To is equivalent to the 
STW. In particular, (7) establishes that the loops in these two models have the same 
fractal dimension. The fractal dimension of the tricolour walk at its critical point can 
therefore assume only one of three possible values: 2, 3 or DSAW. On the basis of our 
Monte Carlo simulations, we can eliminate the latter two values and so conclude that 
the fractal dimension of the STW is exactly 2. It is interesting to note that it bas been 
speculated that d = 3 is the upper critical dimension of the SKW [5,9]. 

Although the equivalence we have established is exact, our argument that D, = 2 
is not rigorous for several reasons. First of all, we cannot be certain that our self- 
attracting SAL is in the same universality class as the usual self-attracting SAW in 3D. 

Joining the ends of a SAW to form a SAL does not alter the value of U in the high or 
low temperature phases or at the 0 point. However, the attractive interactions are 
longer-ranged in our SAL than in the usual self-attracting SAW, and this may mean that 
the two collapse transitions are different universality classes. Indeed, the effect of 
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next-nearest-neighbour interactions on  the ZD collapse transition has been debated at 
length [20]. The constraints on our SAL configurations may also alter the universality 
class. Finally, even if it is granted that our constrained, self-attracting SAL is in the 
same universality class as the self-attracting SAW with nearest-neighbour interactions 
alone, it is possible that a slow crossover occurs in the STW, and that the true asymptotic 
value of the fractal dimension is either 3 or D,,,. This scenario strikes us as unlikely, 
however, since we see no evidence for such a crossover in our simulations. Moreover, 
it has been established rigorously that the SKW on the hexagonal lattice is critical at 
p = ;[41, and the tricolour walk is expected to be critical at the point p = q = f by analogy. 

If we are correct in identifying p = q = 5 as a critical point of the tricolour walk, 
then To= &/In 3 is the exact collapse transition temperature of the SASAL. As far as 
we can determine, this is the first collapse transition temperature to be found exactly 
in 3 ~ .  This result should be quite useful in Monte Carlo studies of the collapse transition, 
since criiicai ejcponenis can be compuied much more preciseiy when ihe exact iransiiion 
temperature is known. In addition, very long polymer chains at their 0 point can be 
constructed using the STW. This may prove useful in resolving a dispute concerning 
the corrections to scaling at the 3~ 0 point [25]. 

In summary, in this letter we introduced the tricolour walk, a growing SAW that is 
a direct generalization of the smart kinetic walk to 3 ~ .  Our growing walk is readily 
simulated, even though it is ‘smart’. In the symmetric tricolour walk, all allowed moves 
for the walker are equally weighted. Our Monte Carlo simulations of this walk strongly 
suggest that its fractal dimension is 2. We demonstrated that the STW is equivalent to 
a self-attracting SAW that has come to equilibrium at a certain temperature To. This 
equivalence is a direct analogue of a mapping [I81 between the SKW on the hexagonal 
lattice with p =$ and a self-attracting SAW at its collapse transition. Our mapping was 
used to argue that To must he the 0 temperature for the self-attracting SAW, and hence 
that the fractal dimension of the symmetric walks is exactly 2. The STW would therefore 
appear to be in a different universality class than both the kinetic growth walk and 
the DLSAW. On the other hand, our walk may have the same asymptotic scaling 
behaviour as the GSAT in 3 ~ ,  but this could be confirmed only by analytical work on 
the latter problem. 

As in the case of the SKW on the ZD hexagonal lattice, the tricolour walk is intimately 
related to percolation. This relationship will be discussed in forthcoming publications 
[22], as will asymmetric tricolour walks. 

We are grateful to B Berche for helpful discussions. One of us (J-MD) wishes to thank 
Nato for a research grant. RMB was supported by a grant from the IBM Corporation 
and by NSF Grant No. DMR-9100257. 
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